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Equations are given for determining the anisotropic thermal motion of individual atoms in crystals 
by three-dimensional Fourier refinement methods. Simple approximations are indicated. An analysis 
shows that accidentally absent reflexions can slow up the convergence of the refinement unless 
modifications are made. Formulae for the accuracy of the thermal parameters are given. 

1. Introduct ion 

The object of the present paper is to discuss part of 
the theory of the determination of the anisotropic 
thermal motion of atoms in crystals from the ampli- 
tudes of the Bragg reflexions. The anisotropic para- 
meters may be found either by least-squares or by 
Fourier methods (Cochran, 1951a). The present study 
is especially concerned with the setting up of equations 
convenient for use in three-dimensional Fourier refine- 
ment, and has been stimulated both by the need to 
determine anisotropic parameters and by the increas- 
ing availablity of electronic digital computers, which 
make it possible to undertake the necessary calcula- 
tions without undue effort. The methods suggested 
have already been applied in several structure anal- 
yses, the calculations being carried out on the Man- 
chester University electronic computer. 

We may start by assuming the following well known 
results: 

(i) The scattering factor for an atom in thermal 
motion is the product of the scattering factor for the 
atom at rest multiplied by the transform of the 
'smearing' function. 

(ii) If an atom vibrates at a given temperature in 
an isotropic harmonic potential field, the smearing 
function t(x) is a Gaussian (Bloch, 1932) 

t(x) --- (2~u2) -3/2 exp (-x2/2u2), (1.1) 

where the only parameter is u '~, the mean square 
amplitude in any direction. 

(iii) The transform of t(x) is 

q(s) = exp (-2~u~s~) , (1.2) 

where s = Isl = 2 sin 0/). is the reciprocal radius; or, 
more commonly, 

q(s) = exp { - B  (sin 0/~t)~}, (1.3) 
where 

B = 8z~u ~ . (1.4) 

The vibrations of an atom in an anisotropic har- 
monic potential field may be characterized by a sym- 

metric tensor U, with six independent components, 
such that  the mean square amplitude of vibration in 
the direction of a unit vector l, with components li, is 

3 3 

u e = .~ ~ Uijlilj. (1.5) 
2=1  ] = 1  

For anisotropic thermal motion the smearing function 
is thus 

t(x) = (2z~) -8/2 (det U)-½ exp {-~(XXU~]lxixj)}, (1.6) 

where U -1 is the matrix inverse to U. The transform 
of this is 

q(s) = exp {-2g2(_F/zv'.,Uijsi81)}, (1.7) 

where s is the reciprocal vector with components s i. 

To parallel (1.3), (1.7) may be written 

q(s) = exp {-(ZZB~jmimj)(sin 0/2)~}, (1-8) 

where m is a direction in reciprocal space, and B = 
U/8z~ 9 is a symmetrical tensor. XZBijmimj may be 
regarded as the value of B in the direction m. (As 
shown in the Appendix, (1-5)-(1.8) are not restricted 
to orthogonal axes.) 

The problem to be considered is the determination 
of the six independent components of U or B for 
each atom in the asymmetric unit of a crystal. The 
obvious methods to use are extensions of either the 
least-squares or the Fourier method. The extension 
of least squares is straightforward, as the only new 
problem is the evaluation of the derivatives of struc- 
ture factors with respect to the thermal parameters. 
Several structures having anisotropic thermal motion 
have already been analysed in this way. A comment 
on the least-squares method will be made at the end 
of §4. 

For the Fourier method Cochran (1951a, b) has 
suggested that  the thermal parameters should be 
determined by the criteria that  the second derivatives 
of the D = (@o-@¢) difference map should be zero at 
the atomic positions; or equivalently, that  the six 
second derivatives of the observed and calculated 
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electron densities should be equal at each atomic 
position. These criteria may be written 

(b~D/bx~bxq)~ = 0; (p, q = 1, 2, 3) (1.9) 
or 

(b~o/bXpbXq)~ = (b2~/bXpbXq)~, (1.10) 

where the suffix r denotes the point at which the 
derivatives are to be evaluated. If there are N atoms 
in the asymmetric unit, there are thus 6N criteria to 
determine the 6N U#'s. Cochran applied these criteria 
in two-dimensional projections, where he took the 
temperature factor as 

exp {-se(u cos ~ (og-fl)+v sin e (o~-fl))}, (1.11) 

where u, v and fl are the three thermal parameters, 
(og-fl) being the angle between the reciprocal direction 
and the direction of maximum vibration. He also gave 
equations for refining these parameters. This choice 
of parameters is rather inconvenient for three-dimen- 
sional work, and it is preferable to return to the U#'s 
introduced above. 

I t  will prove convenient sometimes to write the 
coordinates of a point as (xz, x e, x3) and sometimes 
as (x, y, z); similarly the Miller indices will be written 
either (h~, h~, h3) or  (h, k, l). 

2. Fourier refinement equations for thermal  
parameters  

:For simplicity we write the temperature term (1.7) 
in the form 

q(h,k, 1) 
= exp - {ba~h e + bzehk + bz3hl + b~k e + be3kl + bss/~}, (2.1) 

where 
2~2a*~U~ = bla (2-2a) 

and 
2×2~ea*b*Ul~ = bz~, etc., (2.2b) 

a*, b*, c* being the reciprocal axis lengths. The factor 2 
has been introduced on the left-hand side of (2.2b) so 
tha t  (2.1) can be expressed in terms of six indepen- 
dent b#. 

We shall now derive refinement equations for the 
b# of a particular atom r. :For simplicity we shall omit 
the suffix r occurring outside the brackets of ex- 
pressions such as (1.9). Let b = (b~, bl~. . . . .  ) denote 
a set of values of the bi~., and let Ab = (Ab~, Ab~ . . . .  ) 
be a set of small changes in these; then by the mul- 
t ivariate Taylor theorem 

~x~ bxq/b+~ b 

- \bxvbxqJb + ~ Ab#-~i j \bx, OXq]b+O(Ab:'). (2.3) 

Accordingly, if we know the six (~/bxvbXq) for a 
given set of bij, we can determine the set of Ab#, which 
will make the second derivatives of ~ equal to the 
second derivatives of ~o, by solving the sixth-order 
linear equations 

or, in full, 

~bll \ bX ~ ] 

~ (~o- ~)  ~ D  
bx~bxq = bx~bxq (all p, q); 

(2.4) 

+ ~ \bx 2]'Ab12+''" 

+ \ bx2/" Ab= = 

~' [ b~c ~" Ab11 + • Ab12 + . . .  
~b n \bxby] 

b ( b eC .Ab33 beD (2.5) 
+ ~ \bxby] - Oxby 

. . . . .  • . , . , o . .  o o . . . . ,  o , , o .  o . . . . . . , . * * o o o  

Abl  + • + . . .  

+ ~ \ b Z  2] Ab33 ~- bz 2 . 

The quantities on the right-hand side of these equa- 
tions are the differences of the observed and calculated 
second derivatives at the atomic position. 

If the scale factor for an atom also has to be deter- 
mined, there will be seven parameters per atom in the 
scattering factor" 

f(h, k, l) = (1 +d)fo(h, k, l) exp - { b a l h ~ + . . .  +bssl2} , 
(2-6) 

where fo is the scattering factor for the stat ionary 
atom. The seven unknowns d, bzl, . . . ,  b33 may be 

de ermined lrom the six c0ndiVi0n  on  eoond 
derivatives already mentioned and an extra condition 
tha t  the observed and calculated densities should be 
equal, tha t  is 

(D), = 0 ,  / 
(2.7) 

(b2D/bxvb%)~ = 0 (all p, q).  ! 

In refinement these criteria lead to a set of seventh- 
order equations determining Ad, Ab n . . . .  , Ab3s: 

b b 
-~ (~). Ad + ~ (~). Ab~ + . . .  

+ ~ (~)" Abss = D 

+ I )'Ab3" = I2.sl 

. , ,  , . , . . . . . .  o , , . . o . . . ,  o . ° ° o . . . ° ,  o o . ° . ,  o 

b /b2Q~\ b /beQ~\ 

0 /02~c\ 0~D 
bz ~ 
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The scale parameter requires further discussion. 
First, there is usually no uncertainty about the number 
of electrons in a particular 'atom',  and the scale 
factor, if it is a parameter, really belongs to the Fo. 
This may be dealt with by changing the sign of Ad 
and applying it to the Fo. Secondly, if the scale factor 
does belong to the Fo, there is only a single scale 
factor for the structure and not one for each atom. 

The second point suggests the following procedure 
in analyses in which the scale of the observed data is 
a parameter:  

(i) In  each cycle of refinement solve the seventh- 
order equations (2.8) for each atom in the asymmetric 
unit. 

(ii) From the solutions of these equations find a 
weighted mean scale factor for the whole structure 
(the weights being perhaps proportional to the ~o for 
each atom). 

(iii) The new scale factor will give new sets of 
(~o/~X~Xq)  and hence new sets of (~D/~xvbxq); with 
these new values, solve the sixth-order equations (2.5) 
to obtain the required Abi/ for  each atom. 

This method has been applied in analyses of geranyl- 
amine hydrochloride and 1,2-diphenyltetrafluoro- 
ethane. An alternative method for finding the overall 
scale factor and the individual anisotropic parameters 
is discussed in § 4. If the scale factor is not an unknown, 
it is, of course, only necessary to deal with the sixth- 
order equations (2-5). 

If only the variations of the individual isotropic 
temperature parameters B and a scale factor are 
being considered, two criteria are used 

(D), = 0 ,  I 
and ] (2.9) 

(~D/~re)~ = O, 

where the second derivative is the mean of the three 
principal second derivatives of D. The refinement 
equations are then 

O-d (e~)'Ad + - ~  (~) . A B  = D ,  

O---d \ Or ~ /" A d + - ~  • A B  = Or~ . 

The determination of the scale and temperature 
parameters by the criteria (2.7) of equal observed and 
calculated peak heights and curvatures may be 
criticized (Jeffrey & Cruickshank, 1953) on the grounds 
tha t  it conceals any anisotropy of the electron density 
which may  be due to the distribution of valence elec- 
trons. A possible method of resolving this difficulty is 
to determine the scale and temperature parameters 
from consideration of the high-order reflexions only, 
for which the major par t  of the X-ray scattering is 
from the inner electrons. This method has been used 
in the analysis of anthracene (Cruickshank, 1956). 

3. Approximate  forms of the refinement equations 

We must now consider the evaluation of the coeffi- 
cients on the left-hand side of equations (2.5) and (2.8). 
For simplicity we shall suppose tha t  the coordinates 
(xl, x~, x~) or (x, y, z) are expressed in radians, e.g. 
x = 2zex'/a. This avoids the occurrence in formulae of 
powers of (27~/a), etc. 

In a centrosymmetric space group, 

~2~ ~ hphqF(h) cos (h .x)  . (3"1) 
OxvOxq h 

Hence, 

Obii \Oxp OXq/ 
Now 

0Fc(h) 
cos (h.x)  . (3.2) 

~-Fc = ~ ~fr(h) cos (h. Xr), (3"3) 
~bij ~bi/ 

where the summation is over all atoms related by 
symmetry to tha t  at xr, and 

0ff(h) 
- ~bi/(fi, o(h ) exp - { b l a h S + . . .  +baaha2}) ~bi/ 

= - h i h j f r ( h ) .  (3"4) 

In the simplest centrosymmetric space group, P1, the 
two terms in (3"3) arise from the atoms at x~ and - x ,  
so tha t  

~Fc/~b# = -2hih]fr(h) cos (h.xr) • (3"5) 

Recalling tha t  (3.2) is to be evaluated at x = x r, and 
using 2 cos 2 0 = l+cos  20, we have 

= ~ h,  hqh,h/ f , (h)( l+cos (2h .x , ) ) .  (3.6) 
~bi--~ ~ OxpOxq/ 

The term cos (2h .Xr) may be regarded as an effect 
at  x,  arising from the atom at - x , .  If these atoms 
do not overlap, this term may be neglected (cf. 
Cruickshank, 1952), and (3.6) reduces approximately to 

~b i--~ \ ~zp OXq/ = "~h hv hq h~ h:f, . ( 3" 7 ) 

In the simple case of i = j = p = q =  1, 

~bal \ ~x 2 ] = ~ hV" (3.8) 

and 

At a similar level of approximation, 

0 
Ob n (~e) = - Zh h~'f ' 

~-d \ ~x 2 / = - ~'h h~ f ' (3"9) 

0--~ (~c) = .~Yf. h 
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For P1, the equations (2.8) may thus be written 

.Z f  . A d - X h ~  f . A b u - Z h l c f  . A b e 2 - . . .  

-Z l~f .  Ab3a = D ,  

- Xh~ f .A  d + Zh~ f . Abl l  + Xhak f . Abl~ + . . . 
+Zh~l~ f  .Abaa = ~ D / 3 x  2 , 

- . Z h k  f . A d  + Zhalcf  . A b ~  + Xh~k~ f . Abl~ 

+ . . .  + X h k l ~ f .  A b3a = ~2D/3x 3y , 

. . . . , . . . . . . . . . . . . . . ° . . . . . . ° . . . ° ° . * * * , .  , 

- Xl~ f . A d  + Xh~12 f . Ab~l + Zhkl~ f . A b ~  + . . . 

+ Xl~ f . Aba3 = 3~D/~z ~. , 

where 

I 

I (3.10) 

I 
D = ~ (Fo-F~)  cos (h.x~), | 

and h (3.11) 
3~D/3x3y = - ~Y, h k ( F o - F ¢ )  cos (h .x , ) ,  etc. 

h 

The coefficients on the left-hand side of (3.10) form 
a symmetric matrix with only 22 independent ele- 
ments: one of the kind 27f, 6 of the kind -Xh~h~f and 
15 of the kind ~,h~h~haf. The symmetry  is destroyed 
if the coordinates are expressed in length units, as 
factors powers of (2~/a), etc., then occur unsym- 
metrically. 

Expressions similar to (3.7) and (3.9) apply in other 
centrosymmetric space groups if the systematic ab- 
sences are allowed for by appropriate multiplicities in 
the other terms. In  a non-centrosymmetric space 
group (3-6), for example, is replaced by 

~bn \ 3x ~ ] = ½ Xmh4 f , (3-12) 

where m =  1 for the general planes and m = 2  if 
either the real or the imaginary par t  of the structure 
factor is zero (cf. Cruickshank, 1952). 

:Formally the matr ix on the left-hand side of (3.10) 
must be recalculated at each cycle of refinement, but 
this is not usually necessary as the elements often 
change little from cycle to cycle (it is, of course, 
essential to recalculate the right-hand side in each 
cycle). The calculation of the correct matrix for the 
first cycle is particularly easy, since isotropic scat- 
tering factors are involved. Further  approximations 
in the first cycle are also possible if the data  have been 
gathered uniformly within a spherical region of re- 
ciprocal space. For instance, 

Zld f = ( b 2 / a ~ ) Z h 2 f  , I 
X h l f  = (ac cos fl/a~).~h~f , 

Xka  f = (ba/a4).,~,h4 f , 
2:1c219 f 2 = (bg c2/ag c2)~,h~l~ f , etc., (3.13) 

and further 

Zh~l~f~ = (cos ~. fl + ½ sin e fl) (a~c2/a4)Zh4f. 

Accordingly, in the first refinement cycle with a 
spherical distribution of data, all the matr ix elements 
may be generated from the three quantities L'f, Z h 2 f  
and Zh4f .  With an anisotropic distribution of data,  
a rough approximation is to generate the matr ix  
elements from ~Yf, X s e f  and Xs4f .  

Also, irrespective of the distribution of the data, 
terms such as X h k f  vanish in the first cycle in mono- 
clinic space groups having b as the unique axis. The 
seventh-order equation then reduces to a second-order 
equation involving bl~ and b2a, and to a fifth-order 
equation involving the other unknowns. In ortho- 
rhombic space groups the first-cycle equations reduce 
to three equations involving bl~, b~ a and b~a separately, 
and to a fourth-order equation. The typical ortho- 
rhombic first-cycle solutions, if no scale parameter  is 
involved and the distribution of the data  is spherical, 
are given below in § 5. 

If the principal axes of the U tensor at any stage 
of refinement are chosen as axes for the problem, the 
seventh-order equation for the next  cycle always 
reduces to a fourth-order and three first-order equa- 
tions. The disadvantage of this method is tha t  extra 
transformations are needed to refer the second 
derivatives to the (provisional) principal axes and 
to obtain the solutions as Ab~i's referred to the crystal- 
lographic axes. 

If high-order derivatives of the calculated electron 
density are available, useful alternative approxima- 
tions to (3.7) and (3.9), for resolved atoms in centro- 
symmetric space groups, are 

~bi--~ \~Xp~Xq/r \~xi~x.~---~p~xq]r, etc. (3-14) 

These follow because, when the atoms are fully re- 
solved, the contribution to the calculated density near 
x, arises only from the atom at Xr; hence 

( 04~c / h ~xi~xj~xp~Xq/r= ~" hihjhphqf , . (3.15) 

4. Speed of convergence of the re f inement  

In several problems to which equations (3.10) have been 
applied it has been found tha t  the predicted A bi~ 
were always too large. In one problem examination 
of several successive cycles of refinement showed tha t  
the best results were obtained by taking 70% 0f the 
predicted Abll, 90% of Abl~, 60% of Abla, 70% of 
A b2~, 90% of A b23 and 50 % of A baa. Even with this 
modified procedure, the results were not entirely 
satisfactory, although appreciably better  than those 
given directly by (3.10). 

While ult imately it is immaterial  by  which route the 
correct b~/s are derived, it is extremely unsatisfactory 
to have to introduce 'fudging' factors, the more so 
since their values cannot be found until  the second 
cycle. The following analysis will show tha t  the trouble 
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arises from the accidentally absent reflexions, which 
cause each atomic peak to overlap the others, even 
though all are apparently resolved. 

To allow for the possibility that  the atoms overlap 
one another, we shall now denote the thermal para- 
meters as b~, the upper suffix r indicating the atom. 
We shall omit the scale factor from consideration, so 
that  if there are N atoms in the asymmetric unit the 
6Nb~i will be determined by the 6N conditions on the 
second derivatives of D. The 6N linear equations for 
the simultaneous refinement of all the parameters are 
of the type 

I. , 

~.,  ~,/ ~ \Ox~Sxq/, Abi/ = \Sx~SXq/,' (4"1) 

where on the left-hand side the terms involving atom r 
have been separated from all the others. 

For simplicity, we shall consider the space group P1. 
Let ~ be the calculated density due to the atoms at 
x~ and -x~. Then 

Also 

e,(x) = 2 (2f, cos (h.x~)) cos (h .x)  
h 

= 2 f ~  cos (h. x - x ~ ) .  (4.2) 
h 

q~ = 2 ~)s, (4-3) 

where the summation is over all atoms in the asym- 
metric unit. Accordingly, in (4.1) we may write 

and 

(4-4a) 

~b~---~ \~x~x: / , .  :b~.: \~xv~xq],." (4.4b) 

If we have complete observation within a reciprocal 
sphere of ordinarily large radius, we have approx- 
imately 

e~(x~)- (qs), = 0 (s # r ) .  (4.5) 

Inter-atom terms of the type (4.4b) are then negligible, 
and the set of 6N equations (4.1) reduces to N sets 
of sixth-order equations, as in § 3. This is the justifica- 
tion for the earlier treatment. 

Accidentally absent planes will ordinarily have 
small F s .  For present purposes we sl~all take them as 
zero. Let us use an asterisk * to denote quantities 
involving complete summation within a reciprocal 
sphere, omitting this symbol if the summations ex- 
clude a number of planes having F c = 0. Then 

q* = q¢, (4.6) 

since the summations differ only in zero terms. How- 
ever 

since 
~* # ~r, (4.7) 

2 f i  cos ( h . x - x , )  # .Z f i  cos (h.x-x, .)  , 
h *  h 

as the f ' s  for the excluded planes are non-zero. 
By (4.3), 

~c = ~ +  2 ~ (4.8a) 
and s.r  

~ * =  q*+ 2q*; (4.8b) 
s :#  r 

hence by (4-5), 

(~*)~ = (~*)~. (4.9) 

Using (4.8a), (4.6) and (4.9) 

2 (e,), = (q*),- (q,), = (q*-q,) • 
s#r 

Further, since 

(4.10) 

(~l~b~/) (~s), = -h~hj(Qs), , 

~. ,  ~ (Qs)~ = -hih/2~.~ (~)~ 

= - h ~ h / ( ~ * - Q ~ ) , ,  by (4.10) 

= ( ~ / ~ b : j ) ( q * - e , ) , .  

(4.11) 

(4.12) 

Accordingly, if we introduce <Abe~) as the average for 
each i , j  of Abe. i for all s # r, we may write (4.1) as 

f ( : - " ' ) l  
= \~xp~xq/~" (4"13) 

We shall now. consider the errors in various cases 
in determining the thermal parameters of the atom 
at xr, as in § 3, from the single set of sixth-order 
equations 

,,, ~ \~xp~xq/r Abi/ = \~%~xq],. " (4.14) 

(a) With complete summation Qr = ~r*, so that  
(4-13) reduces immediately to (4.14), as already shown 
after (4.5). 

(b) When <AbSi} = O, for all i , j ,  (4.13) again re- 
duces to (4.14). 

(c) I f  <Ab:i ) = Abi~, for all i , j ,  (4.13) becomes 

since 

e , + ( e * - e , )  = e*-  

(.4.15) 

Equation (4.15) is similar to (4-14), but with ~* re- 



752 T H E  D E T E R M I N A T I O N  OF TI-IE A I ~ I S O T R O P I C  T H E R M A L  M O T I O N  OF ATOMS 

placing ~.  In this case the shifts calculated from (4.14) 
will be too large, since 

(~*)~ > (~)~. (4.16) 

Case (c) contains the germ of the reason why the 
direct application of (3.10) has not always been very 
successful. If the structure has an average overall 
anisotropy, or if the trial isotropic temperature para- 
meters are generally too high or too low, then Abi~ 
will tend to have the same sign and magnitude as Abe# 
In  such cases (3.10) will give rather too large shifts. 
Examination of the refinements in which (3.10) 
proved inaccurate has confirmed these expectations. 

I t  should be noted tha t  this analysis of the slow 
speed of convergence of the refinement does not lay 
the chief blame on the use of the approximation (3.7) 
for (3.6). Accidentally absent planes will certainly 
tend to make (3.7) smaller than (3.6), but  the conse- 
quences of the average interactions from other atoms 
are more important.  

Thus formally, for quick convergence on a structure 
with an appreciable number of accidentally absent 
planes, the full set of equations (4.1) of order 6N must 
be used. However, practically, since it is far preferable 
to have to deal with N sets of sixth-order equations, 
the best method is first to determine the average 
anisotropic parameters of the structure. For if we then 
consider the anisotropic parameters of individual 
atoms, we shall have 

(Ab~ j )=O for all i , j ,  (4.17) 

and (4-13) will reduce to (4.14). Strictly the last 
s tatement is not quite correct since the average in 
(4.17) is over all atoms, whereas in (4"13) the average 
excluded atom r; the difference will not usually 
matter.  The least-squares method is the most suitable 
method of carrying out this preliminary determination 
of the anisotropic thermal motion of the structure. 

Corresponding to (2-6) we take the seven average 
parameters in the form 

Fc(h) = (l+d)F~(h) exp - ( b n h 2 + . . .  +b3al~}, (4.18) 

the average scale parameter {applicable with reversed 
sign to the Fo) having been included for generality. 
If we minimize 

R = .Z, w(JFol-]Fcl) ~ 
h 

and denote the parameters by u~, the seventh-order 
normal equations will be 

w Du,~ ~u~J "Aura = .Zw(]Fol-IFd)  DIF=[ 
h DUn ' 

(4.19) 
where for u,, --- d, ~lF~[/~d = JFc[; | 

for u~ = bn, D}F~I/Dbl~ = -h~]Fc[; j (4.20) 
for u,, = b~, ~lFd/~b~ = -hk]F¢] , etc. 

For monoclinic and orthorhombic space groups, (4-19) 
necessarily reduces to two or more equations of lower 
order. 

These comments on the effects of accidentally 
absent planes on the speed of convergence are equally 
applicable to the least-squares method of determining 
individual anisotropic parameters on account of the 
general relations between the least-squares and Fourier 
methods (Cochran, 1948; Cruickshank, 1952). 

5. Accuracy  

We shall now consider the accuracy of the bij deter- 
mined by the above Fourier refinement technique. 
We shall t reat  in detail only the case when the space 
group is centrosymmetric orthorhombic and the 
spherical isotropic approximations (3.13) are suf- 
ficiently good. This is the simplest case; the methods 
used will indicate how the more general cases may be 
tackled. We shall also suppose tha t  the scale para- 
meter is absent from (3.10). 

In  the first refinement cycle the equations for 
A b i l  , Abe2 and Ab33 are 

(Xhdf).  A bll ÷ (•h2k2f). A b~e 
+ (Xh~l~f). Ab3a = (~2D/~xZ) , 

(Xh2k2 f ) .  Abll + (Xkd f )  . Ab22 
+ (Xk~12f). Abaz = (~2D/~y2) , 

( Xh21~ f ) . A b~ + ( Xk21~ f ) . A b~ 
+ (X14f).Abza = (~D/~z2) .  

(5.1) 

Using the spherical isotropic approximations (3-13), 
the solutions are 

(~ ~ D  3 a 2 ~2D 3 a s ~2D\ I(xh4 
Ab11= ~x ~ lOb2Oy2 10c ~ ~z~) /  f)  , etc. 

(5.2) 

For a cross term, such as b12, the equation corre- 
sponding to (5.1) is 

(Zh2kef) .Able = (~2D/~x~y). (5-3) 

In the spherical isotropic approximation this gives 

To estimate the errors in the determination of the 
b~j, we use the approximate formulae for the variances 
of the second derivatives at general positions (Cruick- 
shank, 1949; Cruickshank & Rollett, 1953): 

and 
a2(~2D/~x 2) = •hda 2(F) , (5.5a) 

a2(~2D/~x~y) = z~,h2k2(~2(F), (5.5b) 
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where 0"2(F) is the variance of F.  In the spherical 
isotropic approximation 

0"2(~2D/~y2) = (54/a4)(Zha0"2(F)), (5.6a) 
and 

0-2(~2D/~x~y) = (b2/3ag")(Zhaag(F)), etc. (5.65) 

The covariance of (~2D/~xe) and (~2D/~y~) is 

cov \~-~ , ~y2 ] = "rh2k20-~(F) • (5.7) 

Now (5.2) shows tha t  the variance of b n is 

0"2(511) = {(6)20-2 (~2D~\ ~x 2 ] 

6 ( 3 a 2 )  [~eD ~2D~ } /  
- 2 .~  i-6~z coy \~x2 ' ~ y ~ / + "  (~h4f)~. (5.8) 

On substi tuting (5.6a), (5.7) etc., this reduces to 

0-~(5n) = {(§)Zh40-2(F)}/(Zh4f) 2 . (5.9) 

The errors in b u and b2~ are correlated with covariance 

coy (511 , 522)={-(3a~/lOb~')(.~h'0-2(F))}/(Zh4f) 2. (5.10) 

Also 
(12(512) = {(3a2/b2)(Zh40"2(F))}/(zYhaf) ~, (5.11) 

coy (bn, b12 ) = 0 and coy (b1~, b23 ) = 0, etc. 

Equat ion (5.9) is the most important  of these for- 
mulae. The corresponding expression for ae(Un) 
applies also to monoclinic and triclinie centrosym- 
metric space groups in the spherical isotropic ap- 
proximation. 

If the scale of the Fo is a parameter in the refine- 
ment, there are likely to be appreciable extra errors 
in the mean values of the anisotropic parameters. The 
errors of these may be determined from the least- 
squares equations (4.19) by the standard least- 
squares formulae, and these errors of the means must 

then be compounded with the errors of the parameters 
of the individual atoms. 

A P P E N D I X  

The proof tha t  (1-6) and (1-7) are valid for triclinic 
axes is as follows. 

Take as a set of orthogonal axes the axes defined 
by the vibration ellipsoid. Let  Xo and x be the co- 
ordinates of a point in the orthogonal and triclinic 
systems, and let so and s be the coordinates of another 
point in the corresponding reciprocal systems. If 
x = Axo, then s -- A'-lSo (International Tables, 1952, 
p. 15). 

Let  Uo--  A-1UA '-1, so tha t  det Uo = det U. 
The quadratic form appearing in (1-6) is 

x ' U - l x  = xo(A'U-1A)xo = xoUolxo . (A.1) 

The quadratic form appearing in (1-7) is 

s ' U s  = so(A-1UA'-I)so = soUoso. (A.2) 

Accordingly (1-6) and (1-7), which are true for the 
orthogonal axes (Cochran, 1954), are also true for 
triclinic axes. 

References 

BLOCH, F. (1932). Z. Phys. 74, 295. 
COCm~AN, W. (1948). Acta Cryst. 1, 138. 
COCm~AN, W. (1951a). Acta Cryst. 4, 408. 
COCm~AN, W. (1951b). Acta Cryst. 4, 81. 
COCm~AN, W. (1954). Acta Cryst. 7, 503. 
CRUICKSHA:NK, D. W. J.  (1949). Acta Cryst. 2, 65. 
CRUICKSHA~, D. W. J.  (1952). Acta Cryst. 4, 511. 
C R U ~ C K S ~ ,  D. W. ft. (1956). Acta Cryst. In the Press. 
CRUICXSHA~K, D. W. J.  & ROT,T,~r, J . S .  (1953). Acta 

Cryst. 6, 705. 
International Tables for X-ray Crystallography, vol. 1 

(1952). Birmingham: Kynoch Press. 
JEFFREY, G. A. & C~eKSHAm~, D. W. J.  (1953). Quart. 

Rev. Chem. Soc., Lond. 7, 335. 


